Mesh Radio:
Governments are keen to encourage the roll-out of broadband interactive multimedia services to business and residential customers because they recognize the economic benefits of e-commerce, information and entertainment. Digital cable networks can provide a compelling combination of simultaneous services including broadcast TV, VOD, fast Internet and telephony. Residential customers are likely to be increasingly attracted to these bundles as the cost can be lower than for separate provision. Cable networks have therefore been implemented or upgraded to digital in many urban areas in the developed countries.
ADSL has been developed by telcos to allow on-demand delivery via copper pairs. A bundle comparable to cable can be provided if ADSL is combined with PSTN telephony and satellite or terrestrial broadcast TV services but incumbant telcos have been slow to roll it out and 'unbundling' has not proved successful so far. Some telcos have been accused of restricting ADSL performance and keeping prices high to protect their existing business revenues. Prices have recently fallen but even now the ADSL (and SDSL) offerings are primarily targeted at provision of fast (but contended) Internet services for SME and SOHO customers. This slow progress (which is partly due to the unfavourable economic climate) has also allowed cable companies to move slowly.
A significant proportion of customers in suburban and semi-rural areas will only be able to have ADSL at lower rates because of the attenuation caused by the longer copper drops. One solution is to take fibre out to street cabinets equipped for VDSL but this is expensive, even where ducts are already available.
Network operators and service providers are increasingly beset by a wave of technologies that could potentially close the gap between their fibre trunk networks and a client base that is all too anxious for the industry to accelerate the rollout of broadband. While the established vendors of copper-based DSL and fibre-based cable are finding new business, many start-up operators, discouraged by the high cost of entry into wired markets, have been looking to evolving wireless radio and laser options.
One relatively late entrant into this competitive mire is mesh radio, a technology that has quietly emerged to become a potential holder of the title 'next big thing'. Mesh Radio is a new approach to Broadband Fixed Wireless Access (BFWA) that avoids the limitations of point to multi-point delivery. It could provide a cheaper '3rd Way' to implement residential broadband that is also independent of any existing network operator or service provider. Instead of connecting each subscriber individually to a central provider, each is linked to several other subscribers nearby by low-power radio transmitters; these in turn are connected to others, forming a network, or mesh, of radio interconnections that at some point links back to the central transmitter.
Governments are keen to encourage the roll-out of broadband interactive multimedia services to business and residential customers because they recognize the economic benefits of e-commerce, information and entertainment. Digital cable networks can provide a compelling combination of simultaneous services including broadcast TV, VOD, fast Internet and telephony. Residential customers are likely to be increasingly attracted to these bundles as the cost can be lower than for separate provision. Cable networks have therefore been implemented or upgraded to digital in many urban areas in the developed countries.
ADSL has been developed by telcos to allow on-demand delivery via copper pairs. A bundle comparable to cable can be provided if ADSL is combined with PSTN telephony and satellite or terrestrial broadcast TV services but incumbant telcos have been slow to roll it out and 'unbundling' has not proved successful so far. Some telcos have been accused of restricting ADSL performance and keeping prices high to protect their existing business revenues. Prices have recently fallen but even now the ADSL (and SDSL) offerings are primarily targeted at provision of fast (but contended) Internet services for SME and SOHO customers. This slow progress (which is partly due to the unfavourable economic climate) has also allowed cable companies to move slowly.
A significant proportion of customers in suburban and semi-rural areas will only be able to have ADSL at lower rates because of the attenuation caused by the longer copper drops. One solution is to take fibre out to street cabinets equipped for VDSL but this is expensive, even where ducts are already available.
Network operators and service providers are increasingly beset by a wave of technologies that could potentially close the gap between their fibre trunk networks and a client base that is all too anxious for the industry to accelerate the rollout of broadband. While the established vendors of copper-based DSL and fibre-based cable are finding new business, many start-up operators, discouraged by the high cost of entry into wired markets, have been looking to evolving wireless radio and laser options.
One relatively late entrant into this competitive mire is mesh radio, a technology that has quietly emerged to become a potential holder of the title 'next big thing'. Mesh Radio is a new approach to Broadband Fixed Wireless Access (BFWA) that avoids the limitations of point to multi-point delivery. It could provide a cheaper '3rd Way' to implement residential broadband that is also independent of any existing network operator or service provider. Instead of connecting each subscriber individually to a central provider, each is linked to several other subscribers nearby by low-power radio transmitters; these in turn are connected to others, forming a network, or mesh, of radio interconnections that at some point links back to the central transmitter.
A microgrid is a group of interconnected loads and distributed energy resources within clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid. If desired, a microgrid can connect and disconnect from the grid to enable it to operate in both grid-connected or island-mode.
Why are Micro Grids Important ?
Enables Grid Modernization:
1. Key component of grid modernization
2. Enables integration of multiple Smart Grid technologies Enhance the integration of Distributed and Renewable Energy Sources
3. Facilities integration of combined heat and power (CHP)
4. Promotes energy efficiency and reduces losses by locating generation near demand
5. Potential to reduce large capital investments by meeting increased consumption with locally generated power. (Local generation may lower investment in the macrogrid)
6. Encourages third-party investment in the local grid and power supply
7. Potential to reduce peak load
Schematic of Micro Grid :
Micro-grid has two critical components, the static switch and the micro-source. The static switch has
the ability to autonomously island the micro-grid from disturbances such as faults, IEEE 1547 events or power quality events. After is landing, the re connection of the micro-grid is achieved autonomously after the tripping event is no longer present. This synchronization is achieved by using the frequency difference between the is landed micro-grid and the utility grid insuring a transient free operation without having to match frequency and phase angles at the connection point . Each micro-source can seamlessly balance the power on the is landed Micro-grid using a power vs. frequency droop controller. This frequency droop also insures that the Micro-grid frequency is different from the grid to facilitate re connection the utility. In the paper a small grid is form to meet the emergency of 200W/d and 46W peak load.


0 comments:
Post a Comment